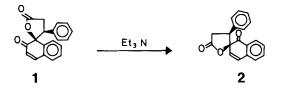
98. Heterocyclic Spiro-naphthalenones. Part IV. Synthesis of Some 3,4-Dihydrospiro [naphthalene-2 (1*H*), 2'-pyrrolidine]-1-ols from 3,4-Dihydrospiro [furan-2 (5*H*), 1'(2'*H*)-naphthalene]-2',5-dione¹)

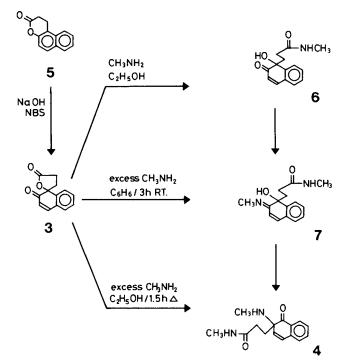
by Daniel Berney and Karlheinz Schuh


Wander Research Institute (a Sandoz Research Unit), CH-3001 Berne, Switzerland

(22.XI.79)

Summary

Depending on the experimental conditions the spirolactone 3 on treatment with methylamine gave compounds 6, 7 or the rearranged product 4. Compound 4 was used to prepare the title compounds 11-13, 15, 18-20 and other derivatives.

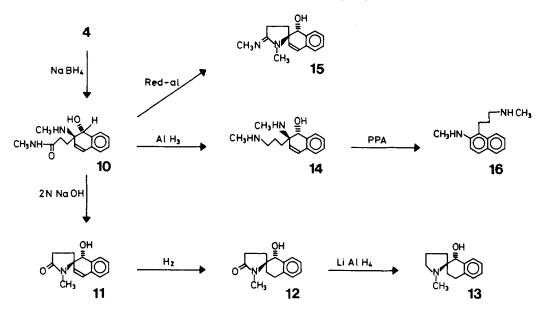

Introduction. - We have reported [2] the rearrangement of the spiro[naphthalene-tetrahydrofuran]dione 1 in methanolic triethylamine to the spirolactone 2. We now present the rearrangement of the spirolactone 3 in the presence of methylamine to give the naphthalenone 4. This rearrangement occurred after opening of the lactone ring by the amine. In this case triethylamine failed to promote any rearrangement.

Results. – Reaction of the spirolactone 3 with methylamine. The benzochromanone 5 [3] was opened with aqueous NaOH and cyclized with NBS to give the spiro[naphthalene-1,2'-tetrahydrofuran]dione 3 in good yield. The spirolactone 3 was opened with methylamine in methanol to yield the hydroxyamide 6, whereas a large excess of methylamine in boiling methanol gave the rearranged product 4. When excess methylamine was used in benzene, the spirolactone 3 was slowly transformed into the unstable imine 7 mixed with 4. On prolonged standing this imine was converted into 4.

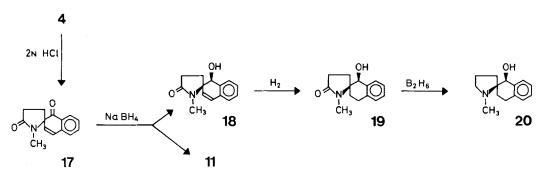
Structure of compound 4. The NMR. signal of H-C(2) in compound 8, obtained by NaBH₄ reduction of 6, is coupled with H-C(3) and H-C(4) which

¹) A part of this work was presented at the 7th International Congress of Heterocyclic Chemistry at Tampa (Fla.) USA, August 12-17, 1979. Part III: [1].

appear as multiplets; a similar coupling is also seen in the spectrum of the reduction product 9 of 7. On the other hand, H-C(1) in the spectrum of the reduction product 10, of 4, appears as a singlet and both olefinic H-C(3) and H-C(4)as doublets, which supports the occurrence of a rearrangement comparable to that of 1 to 2 [2]. Final proof of the structure and configuration of compounds 4 and 10 was obtained when 10 was cyclized with 2 N NaOH to the lactam 11, hydrogenated to 12, and subsequently reduced to give the spiro[naphthalene-2, 2'-pyrrolidine]-2-ol 13 which has an NMR. spectrum identical with that of a product obtained by *Stoll* [5] by reducing and methylating the l'-hydroxyspiro [pyrrolidine-2, 2'-tetralin]-5-one [4]²).



Reactions of 4 and 10. Attempts to reduce the amide 10 to 14 with LiAlH₄ or Red-al³) gave the cyclic spiroamidine 15. Compound 14 was finally obtained by reduction of 10 with AlH₃, formed *in situ* by the addition of CHCl₃ to a suspension of LiAlH₄ in THF⁴). Dehydrative rearrangement of 14 in polyphosphoric acid


⁴) This method may proceed following the equation: CHCl₃+3 LiAlH₄→3 AlH₃+3 LiCl+CH₄.

²) Here we have used A. P. Stoll nomenclature.

³) A 70% solution of sodium bis(2-methoxyethoxy)-aluminium hydride in benzene.

(PPA) gave the N-Methyl-2-(methylamino)-1-naphthalenepropanamine⁵)⁶) (16). Compound 4 was readily cyclized with $2 \times HCl$ to the spiro[naphthalene-pyrrolidine]-dione 17 which was reduced by NaBH₄ to give the alcohols 18 and 11 (3:2). Compound 18 was hydrogenated to 19 which was reduced with B₂H₆ to the spiro-[naphthalene-pyrrolidine]-ol 20.

Experimental Part

For general remarks on NMR. spectra see Part I [6].

3,4-Dihydrospiro[furan-2(5H), I'(2'H)-naphthalene]-2',5-dione⁵)⁷) (3). The lactone 5 [3] (40 g, 0.202 mol) was dissolved under reflux in methanol (240 ml), H₂O (160 ml) and 2N NaOH (100 ml). The solution was cooled to -20° and NBS (35.6 g, 0.2 mol) in methanol (240 ml) and H₂O (60 ml)

⁵) Throughout this paper chem. Abstracts nomenclature is given in the text; in the footnotes the IUPAC-Nomenclature is mentioned.

⁶) *N*-Methyl-3-(2'-methylamino-1'-naphthyl)propylamine.

⁷) Spiro[naphthalene-1(2*H*), 2'-tetrahydrofuran]-2, 5'-dione.

was slowly added. The reaction mixture was then allowed to reach 0° and was filtered. After drying, the compound was recrystallized from CHCl₃/petroleum ether to give 39.6 g (91%) of 3; m.p. 138-139°. **Caution:** this compound is an eye and throat irritant. -1H-NMR.: 6.2 (d, J = 10, H-C(3')).

C₁₃H₁₀O₃ (214.2) Calc. C 72.9 H 4.7% Found C 72.6 H 4.7%

1,2-Dihydro-1-hydroxy-N-methyl-2-oxo-1-naphthalenepropanamide⁵)⁸) (6). Compound 3 (10 g, 47 mmol) was suspended in methanol (75 ml), then 33% CH₃NH₂ in ethanol (7.9 g, 84 mmol) was added with stirring and after 75 min at RT. the solution was evaporated to dryness. The residue was crystallized from methanol/petroleum ether to give 5.4 g (47%) of 6; m.p. 159-161°. - ¹H-NMR.: 6.15 (d, J = 10, H - C(3)); 2.7 (d, CH_3N , collapsed to s after D₂O exchange).

C14H15NO3 (245.3) Calc. C 68.6 H 6.2 N 5.7% Found C 68.2 H 6.1 N 5.4%

1,2-Dihydro-1-hydroxy-N-methyl-2-(methylimino)-1-naphthalenepropanamide⁹) (7) mixed with 4. Compound 3 (5 g, 23 mmol) was suspended at RT. in benzene (50 ml) and anhydrous CH_3NH_2 (50 ml, 1.1 mol) at -20° was slowly added. After 3 h at RT. the clear solution was evaporated to dryness. A solution of 1,5-naphthalenedisulfonic acid (NDS) (4 g, 17.3 mmol) in ethanol (10 ml) added and the salt was allowed to crystallize overnight to give 7.3 g (78%) of a 2:1 mixture of 7 and 4 NDS salts which was not separated; m.p. 188-202°. - ¹H-NMR. of 7: 6.9 (d, J=10, H-C(4)); 6.4 (d, J=10, H-C(3)); 3.3 (s, $CH_3N=C(2)$); 2.7 (d, CH_3NCO).

1,2-Dihydro-N-methyl-2-(methylamino)-1-oxo-2-naphthalenepropanamide¹⁰) (4) 1,5-naphthalenedisulfonate. From 3: compound 3 (80 g, 0.37 mmol) was suspended in methanol (800 ml), 33% CH₃NH₂ in ethanol (500 g, 5.3 mol) was added, and the mixture was heated under reflux for 1.5 h and kept overnight at RT. This solution was evaporated and the amine 4 was isolated as NDS salt (133 g, 88.5%), m.p. 250-253° (dec.) (C₂H₅OH/H₂O). - ¹H-NMR.: 8.0 ($d \times d$, J=3 and 10, H-C(8)); 6.7 (d, J=10, H-C(4)); 6.0 (d, J=10, H-C(3)); 2.55 (d, collapsed to s after D₂O exchange, CH₃NCO); 2.0 (s, CH₃N).

C₂₀H₂₂N₂O₅S (402.5) Calc. C 59.7 H 5.5 N 7.0% Found C 59.2 H 5.6 N 6.7%

From 7: a mixture of 7 and 4 was converted quantitatively to 4 when heated under reflux in methanol for 1 h.

1,2-Dihydro-1,2-dihydroxy-N-methyl-1-naphthalenepropanamide¹¹) (8). Compound 6 (100 mg, 0.41 mmol) was dissolved in CH₃OH and treated with NaBH₄ (100 mg, 2.6 mmol) at 0-5° to give 30 mg (30%) of 8; m.p. 137-138° (CHCl₃/ethcr). - ¹H-NMR.: 6.4 ($d \times d$, J=3 and 10, H-C(4)); 5.9 ($d \times d$, J=2 and 10, H-C(3)); 4.6 (narrow m, H-C(2)); 2.55 (d, collapsed to s after D₂O exchange, CH₃N).

C14H17NO3 (247.3) Calc. C 68.0 H 6.9 N 5.7% Found C 67.8 H 7.0 N 5.6%

1,2-Dihydro-1-hydroxy-N-methyl-2-(methylamino)-1-naphthalenepropanamide¹²) (9). A 2:1 mixture of bases 7 and 4 prepared from the mixture of NDS salts (20.1 g, 50 mmol) was dissolved in methanol (200 ml) and reduced at 0-5° with NaBH₄ (1 g, 26 mmol) added in small portions. After the usual work-up, the oily residue was crystallized from CHCl₃/ether to give 4.5 g (35%) of 9; m.p. 122-123°. - ¹H-NMR.: 6.3 ($d \times d$, J=3 and 10, H-C(4)); 5.9 ($d \times d$, J=2 and 10, H-C(3)); 3.5 (narrow m, H-C(2)).

C15H20N2O2 (260.3) Calc. C 69.2 H 7.7 N 10.8% Found C 69.0 H 8.0 N 10.6%

(1RS, 2RS)-1, 2-Dihydro-1-hydroxy-N-methyl-2-(methylamino)-2-naphthalenepropanamide¹³) (10) 1, 5naphthalenedisulfonate. Compound 4 was reduced at 0-5° with NaBH₄ by the usual procedure to

⁸⁾ N-Methyl-3-(1-hydroxy-2-oxo-1,2-dihydro-1-naphthyl)-propionamide.

⁹⁾ N-Methyl-3-(1-hydroxy-2-methylimino-1,2-dihydro-1-naphthyl)-propionamide.

¹⁰) N-Methyl-3-(2-methylamino-1-oxo-1,2-dihydro-2-naphthyl)-propionamide.

¹¹) N-Methyl-3-(1,2-dihydroxy-1,2-dihydro-1-naphthyl)-propionamide.

¹²) N-Methyl-3-(1-hydroxy-2-methylamino-1,2-dihydro-1-naphthyl)-propionamide.

¹³) (1RS,2RS)-N-Methyl-3-(1-hydroxy-2-methylamino-1,2-dihydro-2-naphthyl)-propionamide.

give 10 in 62% yield; m.p. 115-116°, NDS salt 205-206° dec. – ¹H-NMR.: 6.45 (d, J = 10, H–C(4)); 5.7 (d, J = 10, H–C(3)); 5.0 (s, H–C(1)).

C20H24N2O5S (404.5) Calc. C 59.4 H 6.0 N 6.9% Found C 59.6 H 6.0 N 6.9%

trans-1-Hydroxy-1'-methyl-spiro[naphthalene-2(1H), 2'-pyrrolidine]-5'-one (11). Compound 10 (23 g, 88 mmol) was dissolved in methanol (115 ml), 2N NaOH (1150 ml) was added and the mixture was heated under reflux for 3 h. The solution was cooled to -20° and filtered, the solid was recrystallized from ethyl acetate to give 11.5 g (57%) of 11; m.p. 206-207°. - ¹H-NMR.: 6.4 (d, J=10, H-C(4)); 5.75 (d, J=10, H-C(3)); 5.2 (d, collapsed to s after D₂O exchange, H-C(1)).

C14H15NO2 (229.3) Calc. C 73.3 H 6.6 N 6.1% Found C 73.1 H 6.4 N 5.9%

trans-3, 4-Dihydro-1-hydroxy-1'-methyl-spiro[naphthalene-2(1H), 2'-pyrrolidine]-5'-one¹⁴) (12). Compound 11 in methanol and Pd/C 5.4% was hydrogenated under normal conditions to give 12 in quantitative yield; m.p. 203-205° (methanol/H₂O). – ¹H-NMR.: 4.95 (*d*, collapsed to *s* after D₂O exchange, H-C(1)); 2.9 (*s*, CH₃N).

C14H17NO2 (231.3) Calc. C 72.7 H 7.4 N 6.1% Found C 72.9 H 7.3 N 6.0%

trans-1, 2, 3, 4-Tetrahydro-1'-methyl-spiro [naphthalene-2, 2'-pyrrolidine]-1-ol (13)¹⁵) 1, 5-naphthalenedisulfonate. Compound 12 (231 mg, 1 mmol) was reduced with LiAlH₄ (95 mg, 2.5 mmol) in THF (10 ml) at RT. for 25 min followed by usual work-up. Compound 13 was isolated as NDS salt (25 mg, 7%); m.p. 232-237°. - ¹H-NMR.: 7.15 (m, 4 arom. H); 4.65 (s, H-C(1)); 4.5 (br. s, HO); (s, H₃CN).

C19H23NO4S (361.5) Calc. C 63.1 H 6.4 N 3.9% Found C 62.8 H 6.3 N 4.0%

trans-1, 2, 3, 4-Tetrahydro-1'-methyl-5'-methylimino-spiro[naphthalene-2, 2'-pyrrolidine]-1-ol¹⁶) (15). Compound 10 (13 g of base, 0.05 mol) dissolved in THF (200 ml) was added dropwise to a solution of Red-al³) (64 g, ~0.2 mol) in THF (400 ml). The solution was kept 1.5 h at RT. and worked up to give 5.5 g (45%) of 15; m.p. 276-280° (methanol). - ¹H-NMR.: 6.5 (d, J = 10, H-C(4)); 5.8 (d, J = 10, H-C(3)); 2.9 and 2.8 (2 s, 2 CH₃N).

C15H18N2O (242.3) Calc. C 74.3 H 7.5 N 11.6% Found C 74.1 H 7.8 N 11.1%

(1 RS, 2 RS)-1, 2-Dihydro-2-(methylamino)-2-[3-(methylamino)propyl]-1-naphthalenol¹⁷) (14) dihydrochloride. Compound 10 (19.5 g of base, 0.075 mol) dissolved in THF (250 ml) and CHCl₃ (6 g, 0.05 mol) was added dropwise to a suspension of LiAlH₄ (8.55 g, 0.225 mol) in THF (300 ml). The mixture was heated under reflux for 1 h. After the usual work-up, 14 was isolated as dihydrochloride (18.6 g, 78%); m.p. 205-207° (ethanol/ether). - ¹H-NMR.: 6.4 (d, J=10, H-C(4)); 5.8 (d, J=10, H-C(3)); 5.0 (s, H-C(1)); 2.35 and 2.15 (2 s, 2 CH₃N).

C₁₅H₂₄Cl₂N₂O (319.3) Calc. C 56.4 H 7.6 N 8.8% Found C 56.1 H 7.6 N 8.6%

N-Methyl-2-(methylamino)-1-naphthalenepropanamine¹⁸) (16) 1,5-naphthalenedisulfonate. Compound 14 dihydrochloride (8.4 g) was mixed with PPA (130 g) and heated to 90-100° for 30 min. The solution was poured into H₂O, made alkaline and extracted. Compound 16 was isolated as NDS salt (12.2 g, 90%); m.p. 218-224° (methanol/H₂O). - ¹H-NMR.: 8.0-7.0 (m, 6 H ar.); 2.9 (s, CH₃N--C(2)); 2.4 (s, CH₃N-alkyl).

 $C_{25}H_{28}N_2O_6S_2 \ (516.6) \qquad Calc. \ C \ 58.1 \quad H \ 5.5 \quad N \ 5.4\% \qquad Found \ C \ 58.3 \quad H \ 5.6 \quad N \ 5.7\%$

l'-Methyl-spiro[naphthalene-2(1H), 2'-pyrrolidine]-1, 5'-dione (17). Compound 4 (10 g, 38.7 mmol) was heated 3 h under reflux in 2N HCl (250 ml). This solution was cooled and made alkaline in

¹⁴) trans-1-Hydroxy-1'-methyl-spiro[1,2,3,4-tetrahydro-naphthalene-2,2'-pyrrolidine]-5'-one.

¹⁵) trans-1'-Methyl-spiro[1,2,3,4-tetrahydronaphthalene-2,2'-pyrrolidine]-1-ol.

¹⁶) trans-1'-Methyl-5'-methylimino-spiro[1,2,3,4-tetrahydronaphthalene-2,2'-pyrrolidine]-1-ol.

¹⁷) (1RS,2RS)-2-Methylamino-2-[(3-methylamino)propyl]-1,2-dihydronaphthalene-1-ol.

¹⁸) *N*-Methyl-3-(2-methylamino-1-naphthyl)-propylamine.

order to liberate 17 which behaved as a base; 7.5 (85%) of 17 were obtained; m.p. $91-94^{\circ}$. – ¹H-NMR.: 6.85 (d, J = 10, H-C(4)); 6.2 (d, J = 10, H-C(3)); 2.65 (s, CH₃N).

C₁₄H₁₃NO₂ (227.3) Calc. C 74.0 H 5.8 N 6.2% Found C 73.8 H 5.8 N 6.3%

cis- and trans-1-Hydroxy-1'-methyl-spiro[naphthalene-2(1H), 2'-pyrrolidine]-5'-one¹⁹) (18 and 11). Compound 17 (20 g, 0.088 mol) was reduced at 0-5° with NaBH₄ (3.52 g, 0.088 mol) in methanol (200 ml). A 2:3 mixture of the isomers 11 and 18 was isolated (16.8 g, 83%). This mixture was dissolved in 2-propanol (100 ml) and pure 18 crystallized (4.5 g, 22%); m.p. 170-175°. - ¹H-NMR.: 6.75 (d, J=10, H-C(4)); 5.7 (d, J=10, H-C(3)); 4.8 (d, collapsed to s after D₂O exchange, H-C(1)); 2.4 (s, CH₃N).

C14H15NO2 (229.3) Calc. C 73.3 H 6.6 N 6.1% Found C 73.1 H 6.8 N 6.1%

A small amount of the mother liquor was chromatographed on silica gel TLC. plates (heptane/ CHCl₃/ethanol; 65:35:10) to isolate a pure sample of 11 (highest Rf value); m.p. 206-207°. – ¹H-NMR.: superimposable with 11 obtained from 10.

cis-3, 4-Dihydro-1-hydroxy-1'-methyl-spiro [naphthalene-2(1H), 2'-pyrrolidine]-5'-one²⁰) (19). Compound 18 (130 g, 0.57 mol) in methanol (2.5 l) and Pd/C 5.4% (5 g) was hydrogenated under normal conditions to give 19 (125.5 g, 96%); m.p. 183-185° (CHCl₃/ether). - ¹H-NMR.: 4.5 (d, collapsed to s after D₂O exchange, H-C(1)); 2.9 (s, CH₃N).

C14N17NO2 (231.3) Calc. C 72.7 H 7.4 N 6.1% Found C 72.3 H 7.3 N 6.0%

cis-3,4-Dihydro-1'-methyl-spiro [naphthalene-2(1H),2'-pyrrolidine]-1- ol^{21}) (20). Compound 19 (1.15 g, 5 mmol) in THF (15 ml) was reduced with $1 \le B_2 H_6/THF$ (Aldrich, 10 ml) under reflux for 3 h. After the usual work-up, 800 mg (74%) of 20 were isolated; m.p. 88-91° (petrol. ether). - ¹H-NMR.: 4.1 (s, H-C(1)); 2.4 (s, CH₃N).

C14H19NO (217.3) Calc. C 77.4 H 8.8 N 6.5% Found C 77.0 H 8.8 N 6.5%

REFERENCES

[1] D. Berney & K. Schuh, Helv. 62, 1268 (1979).

[2] D. Berney & K. Schuh, Helv. 61, 1399 (1978).

[3] C.O. Guss & R.W. Lerner, J. Amer. chem. Soc. 78, 1236 (1956).

[4] A. P. Stoll, T.J. Petcher & H. P. Weber, Helv. 62, 1223 (1979).

[5] A. P. Stoll, private communication.

[6] D. Berney & K. Schuh, Helv. 61, 1262 (1978).

¹⁹) cis- and trans-1-Hydroxy-1'-methyl-spiro[1,2-dihydronaphthalene-2,2'-pyrrolidine]-5'-one.

²⁰) cis-1-Hydroxy-1'-methyl-spiro[1,2,3,4-tetrahydronaphthalene-2,2'-pyrrolidine]-5'-one.

²¹) cis-1'-Methyl-spiro[1,2,3,4-tetrahydronaphthalene-2,2'-pyrrolidine]-1-ol.